Warm molecular hydrogen in outflows from Ultraluminous Infrared Galaxies


Ultraluminous infrared galaxies (ULIRGs) show on average three times more emission in the rotational transitions of molecular hydrogen than expected based on their star formation rates. Using Spitzer archival data we investigate the origin of excess warm H_2 emission in 115 ULIRGs of the IRAS 1 Jy sample. We find a strong correlation between H_2 and [FeII] line luminosities, suggesting that excess H_2 is produced in shocks propagating within neutral or partially ionized medium. This view is supported by the correlations between H_2 and optical line ratios diagnostic of such shocks. The galaxies powered by star formation and those powered by active nuclei follow the same relationship between H_2 and [FeII], with emission line width being the major difference between these classes (about 500 and 1000 km/sec, respectively). We conclude that excess H_2 emission is produced as the supernovae and active nuclei drive outflows into the neutral interstellar medium of the ULIRGs. A weak positive correlation between H_2 and the length of the tidal tails indicates that these outflows are more likely to be encountered in more advanced mergers, but there is no evidence for excess H_2 produced as a result of the collision shocks during the final coalescence.Comment: 16 pages, MNRAS accepted. Complete data tables and Spitzer spectra are available at

    Similar works

    Full text


    Available Versions