Most computational models of analogy assume they are given a delineated
source domain and often a specified target domain. These systems do not address
how analogs can be isolated from large domains and spontaneously retrieved from
long-term memory, a process we call spontaneous analogy. We present a system
that represents relational structures as feature bags. Using this
representation, our system leverages perceptual algorithms to automatically
create an ontology of relational structures and to efficiently retrieve analogs
for new relational structures from long-term memory. We provide a demonstration
of our approach that takes a set of unsegmented stories, constructs an ontology
of analogical schemas (corresponding to plot devices), and uses this ontology
to efficiently find analogs within new stories, yielding significant
time-savings over linear analog retrieval at a small accuracy cost.Comment: Proceedings of the 35th Meeting of the Cognitive Science Society,
201