Programming languages with countable nondeterministic choice are
computationally interesting since countable nondeterminism arises when modeling
fairness for concurrent systems. Because countable choice introduces
non-continuous behaviour, it is well-known that developing semantic models for
programming languages with countable nondeterminism is challenging. We present
a step-indexed logical relations model of a higher-order functional programming
language with countable nondeterminism and demonstrate how it can be used to
reason about contextually defined may- and must-equivalence. In earlier
step-indexed models, the indices have been drawn from {\omega}. Here the
step-indexed relations for must-equivalence are indexed over an ordinal greater
than {\omega}