A rigidity theory is developed for the Euclidean and non-Euclidean placements
of countably infinite simple graphs in R^d with respect to the classical l^p
norms, for d>1 and 1<p<\infty. Generalisations are obtained for the Laman and
Henneberg combinatorial characterisations of generic infinitesimal rigidity for
finite graphs in the Euclidean plane. Also Tay's multi-graph characterisation
of the rigidity of generic finite body-bar frameworks in d-dimensional
Euclidean space is generalised to the non-Euclidean l^p norms and to countably
infinite graphs. For all dimensions and norms it is shown that a generically
rigid countable simple graph is the direct limit of an inclusion tower of
finite graphs for which the inclusions satisfy a relative rigidity property.
For d>2 a countable graph which is rigid for generic placements in R^d may fail
the stronger property of sequential rigidity, while for d=2 the equivalence
with sequential rigidity is obtained from the generalised Laman
characterisations. Applications are given to the flexibility of non-Euclidean
convex polyhedra and to the infinitesimal and continuous rigidity of compact
infinitely-faceted simplicial polytopes.Comment: 51 page