Abelianization of BPS Quivers and the Refined Higgs Index


We count Higgs "phase" BPS states of general non-Abelian quiver, possibly with loops, by mapping the problem to its Abelian, or toric, counterpart and imposing Weyl invariance later. Precise Higgs index computation is particularly important for quivers with superpotentials; the Coulomb "phase" index is recently shown to miss important BPS states, dubbed intrinsic Higgs states or quiver invariants. We demonstrate how the refined Higgs index is naturally decomposed to a sum over partitions of the charge. We conjecture, and show in simple cases, that this decomposition expresses the Higgs index as a sum over a set of partition-induced Abelian quivers of the same total charge but generically of smaller rank. Unlike the previous approach inspired by a similar decomposition of the Coulomb index, our formulae compute the quiver invariants directly, and thus offer a self-complete routine for counting BPS states.Comment: 38 pages, 13 figure

    Similar works