Although matching effects in superconducting anti-dot arrays have been
studied extensively through magneto-resistance oscillations, these
investigations have been restricted to a very narrow temperature window close
to the superconducting transition. Here we report a "two coil" mutual
inductance technique, which allows the study of this phenomenon deep in the
superconducting state, through a direct measurement of the magnetic field
variation of the shielding response. We demonstrate how this technique can be
used to resolve outstanding issues on the origin of matching effects in
superconducting thin films with periodic array of holes grown on anodized
alumina membranes