research

Criteria for irreducibility of mod p representations of Frey curves

Abstract

Let K be a totally real Galois number field and let A be a set of elliptic curves over K. We give sufficient conditions for the existence of a finite computable set of rational primes P such that for p not in P and E in A, the representation on E[p] is irreducible. Our sufficient conditions are often satisfied for Frey elliptic curves associated to solutions of Diophantine equations; in that context, the irreducibility of the mod p representation is a hypothesis needed for applying level-lowering theorems. We illustrate our approach by improving on an existing result for Fermat-type equations of signature (13, 13, p).Comment: Some minor misprints have been corrected. The paper will appear in Journal de Th\'eorie des Nombres de Bordeau

    Similar works