Quantum metrology is the science that aims to achieve precision measurements
by making use of quantum principles. Attribute to the well-developed techniques
of manipulating and detecting cold atoms, cold atomic systems provide an
excellent platform for implementing precision quantum metrology. In this
chapter, we review the general procedures of quantum metrology and some
experimental progresses in quantum metrology with cold atoms. Firstly, we give
the general framework of quantum metrology and the calculation of quantum
Fisher information, which is the core of quantum parameter estimation. Then, we
introduce the quantum interferometry with single and multiparticle states. In
particular, for some typical multiparticle states, we analyze their ultimate
precision limits and show how quantum entanglement could enhance the
measurement precision beyond the standard quantum limit. Further, we review
some experimental progresses in quantum metrology with cold atomic systems.Comment: 53 pages, 9 figures, revised versio