Synergies between neutrino oscillation experiments: An `adequate' configuration for LBNO


Determination of the neutrino mass hierarchy, octant of the mixing angle theta_{23} and the CP violating phase delta_{CP} are the unsolved problems in neutrino oscillation physics today. In this paper our aim is to obtain the minimum exposure required for the proposed Long Baseline Neutrino Oscillation (LBNO) experiment to determine the above unknowns. We emphasize on the advantage of exploiting the synergies offered by the existing and upcoming long-baseline and atmospheric neutrino experiments in economising the LBNO configuration. In particular, we do a combined analysis for LBNO, T2K, NOvA and INO. We consider three prospective LBNO setups -- CERN-Pyhasalmi (2290 km), CERN-Slanic (1500 km) and CERN-Frejus (130 km) and evaluate the adequate exposure required in each case. Our analysis shows that the exposure required from LBNO can be reduced considerably due to the synergies arising from the inclusion of the other experiments.Comment: 22 pages, 14 figures, 2 tables Version published in JHE

    Similar works