GROUSE (Grassmannian Rank-One Update Subspace Estimation) is an incremental
algorithm for identifying a subspace of Rn from a sequence of vectors in this
subspace, where only a subset of components of each vector is revealed at each
iteration. Recent analysis has shown that GROUSE converges locally at an
expected linear rate, under certain assumptions. GROUSE has a similar flavor to
the incremental singular value decomposition algorithm, which updates the SVD
of a matrix following addition of a single column. In this paper, we modify the
incremental SVD approach to handle missing data, and demonstrate that this
modified approach is equivalent to GROUSE, for a certain choice of an
algorithmic parameter