Asymptotic preserving (AP) schemes are targeting to simulate both continuum
and rarefied flows. Many AP schemes have been developed and are capable of
capturing the Euler limit in the continuum regime. However, to get accurate
Navier-Stokes solutions is still challenging for many AP schemes. In order to
distinguish the numerical effects of different AP schemes on the simulation
results in the continuum flow limit, an implicit-explicit (IMEX) AP scheme and
the unified gas kinetic scheme (UGKS) based on Bhatnagar-Gross-Krook (BGk)
kinetic equation will be applied in the flow simulation in both transition and
continuum flow regimes. As a benchmark test case, the lid-driven cavity flow is
used for the comparison of these two AP schemes. The numerical results show
that the UGKS captures the viscous solution accurately. The velocity profiles
are very close to the classical benchmark solutions. However, the IMEX AP
scheme seems have difficulty to get these solutions. Based on the analysis and
the numerical experiments, it is realized that the dissipation of AP schemes in
continuum limit is closely related to the numerical treatment of collision and
transport of the kinetic equation. Numerically it becomes necessary to couple
the convection and collision terms in both flux evaluation at a cell interface
and the collision source term treatment inside each control volume