The integration of renewable energy sources in the course of the energy
transition is accompanied by grid decentralization and fluctuating power
feed-in characteristics. This raises new challenges for power system stability
and design. We intend to investigate power system stability from the viewpoint
of self-organized synchronization aspects. In this approach, the power grid is
represented by a network of synchronous machines. We supplement the classical
Kuramoto-like network model, which assumes constant voltages, with dynamical
voltage equations, and thus obtain an extended version, that incorporates the
coupled categories voltage stability and rotor angle synchronization. We
compare disturbance scenarios in small systems simulated on the basis of both
classical and extended model and we discuss resultant implications and possible
applications to complex modern power grids.Comment: 9 pages, 9 figure