research

Numerical Computation of Weil-Peterson Geodesics in the Universal Teichm\"uller Space

Abstract

We propose an optimization algorithm for computing geodesics on the universal Teichm\"uller space T(1) in the Weil-Petersson (WPW P) metric. Another realization for T(1) is the space of planar shapes, modulo translation and scale, and thus our algorithm addresses a fundamental problem in computer vision: compute the distance between two given shapes. The identification of smooth shapes with elements on T(1) allows us to represent a shape as a diffeomorphism on S1S^1. Then given two diffeomorphisms on S1S^1 (i.e., two shapes we want connect with a flow), we formulate a discretized WPW P energy and the resulting problem is a boundary-value minimization problem. We numerically solve this problem, providing several examples of geodesic flow on the space of shapes, and verifying mathematical properties of T(1). Our algorithm is more general than the application here in the sense that it can be used to compute geodesics on any other Riemannian manifold.Comment: 21 pages, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions