We consider the problem of learning by demonstration from agents acting in
unknown stochastic Markov environments or games. Our aim is to estimate agent
preferences in order to construct improved policies for the same task that the
agents are trying to solve. To do so, we extend previous probabilistic
approaches for inverse reinforcement learning in known MDPs to the case of
unknown dynamics or opponents. We do this by deriving two simplified
probabilistic models of the demonstrator's policy and utility. For
tractability, we use maximum a posteriori estimation rather than full Bayesian
inference. Under a flat prior, this results in a convex optimisation problem.
We find that the resulting algorithms are highly competitive against a variety
of other methods for inverse reinforcement learning that do have knowledge of
the dynamics.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty
in Artificial Intelligence (UAI2013