We introduce a conceptually novel structured prediction model, GPstruct,
which is kernelized, non-parametric and Bayesian, by design. We motivate the
model with respect to existing approaches, among others, conditional random
fields (CRFs), maximum margin Markov networks (M3N), and structured support
vector machines (SVMstruct), which embody only a subset of its properties. We
present an inference procedure based on Markov Chain Monte Carlo. The framework
can be instantiated for a wide range of structured objects such as linear
chains, trees, grids, and other general graphs. As a proof of concept, the
model is benchmarked on several natural language processing tasks and a video
gesture segmentation task involving a linear chain structure. We show
prediction accuracies for GPstruct which are comparable to or exceeding those
of CRFs and SVMstruct.This is the accepted manuscript version. The final version is available from IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6942234