research

On column density thresholds and the star formation rate

Abstract

We present the results of a numerical study designed to address the question of whether there is a column density threshold for star formation within molecular clouds. We have simulated a large number of different clouds, with volume and column densities spanning a wide range of different values, using a state-of-the-art model for the coupled chemical, thermal and dynamical evolution of the gas. We show that star formation is only possible in regions where the mean (area-averaged) column density exceeds 1021β€…cmβˆ’210^{21} \: {\rm cm^{-2}}. Within the clouds, we also show that there is a good correlation between the mass of gas above a K-band extinction AK=0.8A_{\rm K} = 0.8 and the star formation rate (SFR), in agreement with recent observational work. Previously, this relationship has been explained in terms of a correlation between the SFR and the mass in dense gas. However, we find that this correlation is weaker and more time-dependent than that between the SFR and the column density. In support of previous studies, we argue that dust shielding is the key process: the true correlation is one between the SFR and the mass in cold, well-shielded gas, and the latter correlates better with the column density than the volume density.Comment: 21 pages and 12 figures. Accepted for publication in MNRA

    Similar works