We present realistic equations of state for QCD matter at vanishing
net-baryon density which embed recent lattice QCD results at high temperatures
combined with a hadron resonance gas model in the low-temperature, confined
phase. In the latter, we allow an implementation of partial chemical
equilibrium, in which particle ratios are fixed at the chemical freeze-out, so
that a description closer to the experimental situation is possible. Given the
present uncertainty in the determination of the chemical freeze-out temperature
from first-principle lattice QCD calculations, we consider different values
within the expected range. The corresponding equations of state can be applied
in the hydrodynamic modeling of relativistic heavy-ion collisions at the LHC
and at the highest RHIC beam energies. Suitable parametrizations of our results
as functions of the energy density are also provided.Comment: Updated journal version with refined EoS-parametrization. July 2014.
8 pp. 4 figs. 3 parametrization-tables and weblink Ref. [45