Highly accurate quantum electron dynamics calculations demonstrate that
energy can be efficiently transferred between quantum dots. Specifically, in a
double quantum dot an incoming electron is captured by one dot and the excess
energy is transferred to the neighboring dot and used to remove an electron
from this dot. This process is due to long-range electron correlation and shown
to be operative at rather large distances between the dots. The efficiency of
the process is greatly enhanced by preparing the double quantum dot such that
the incoming electron is initially captured by a two-electron resonance state
of the system. In contrast to atoms and molecules in nature, double quantum
dots can be manipulated to achieve this enhancement. This mechanism leads to a
surprisingly narrow distribution of the energy of the electron removed in the
process which is explained by resonance theory. We argue that the process could
be exploited in practice.Comment: Lette