Context. Thanks to recent asteroseismic observations, it has been possible to
infer the radial differential rotation profile of subgiants and red giants.
Aims. We want to reproduce through modeling the observed rotation profile of
the early red giant KIC 7341231 and constrain the physical mechanisms
responsible for angular momentum transport in stellar interiors.
Methods. We compute models of KIC 7341231 including a treatment of shellular
rotation and we compare the rotation profiles obtained with the one derived by
Deheuvels et al. (2012). We then modify some modeling parameters in order to
quantify their effect on the obtained rotation profile. Moreover, we mimic a
powerful angular momentum transport during the Main Sequence and study its
effect on the evolution of the rotation profile during the subgiant and red
giant phases.
Results. We show that meridional circulation and shear mixing alone produce a
rotation profile for KIC 7341231 too steep compared to the observed one. An
additional mechanism is then needed to increase the internal transport of
angular momentum. We find that this undetermined mechanism has to be efficient
not only during the Main Sequence but also during the much quicker subgiant
phase. Moreover, we point out the importance of studying the whole rotational
history of a star in order to explain its rotation profile during the red giant
evolution.Comment: 8 pages, 8 figures, 5 table