The ability to understand and eventually predict the emergence of information
and activation cascades in social networks is core to complex socio-technical
systems research. However, the complexity of social interactions makes this a
challenging enterprise. Previous works on cascade models assume that the
emergence of this collective phenomenon is related to the activity observed in
the local neighborhood of individuals, but do not consider what determines the
willingness to spread information in a time-varying process. Here we present a
mechanistic model that accounts for the temporal evolution of the individual
state in a simplified setup. We model the activity of the individuals as a
complex network of interacting integrate-and-fire oscillators. The model
reproduces the statistical characteristics of the cascades in real systems, and
provides a framework to study time-evolution of cascades in a state-dependent
activity scenario.Comment: 5 pages, 3 figure