We present a Bayesian seismology inversion technique for propagating
magnetohydrodynamic (MHD) transverse waves observed in coronal waveguides. The
technique uses theoretical predictions for the spatial damping of propagating
kink waves in transversely inhomogeneous coronal waveguides. It combines wave
amplitude damping length scales along the waveguide with theoretical results
for resonantly damped propagating kink waves to infer the plasma density
variation across the oscillating structures. Provided the spatial dependence of
the velocity amplitude along the propagation direction is measured and the
existence of two different damping regimes is identified, the technique would
enable us to fully constrain the transverse density structuring, providing
estimates for the density contrast and its transverse inhomogeneity length
scale