A New Photometric Model of the Galactic Bar using Red Clump Giants


We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have 2.94×1062.94\times 10^6 RC stars over a viewing area of 90.25 deg290.25 \,\textrm{deg}^2. The data include the number counts, mean distance modulus (μ\mu), dispersion in μ\mu and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the E3E_3 model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane x0,y0x_{0},y_{0}, and vertical bar scale length z0z_0, is x0:y0:z0≈1.00:0.43:0.40x_0:y_0:z_0 \approx 1.00:0.43:0.40 (close to being prolate). The scale length of the stellar density profile along the bar's major axis is ∼\sim 0.67 kpc and has an angle of 29.4∘29.4^\circ, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is 2.78×1062.78 \times 10^6, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is ∼5.8\sim 5.8%. We estimate the total mass of the bar is ∼1.8×1010M⊙\sim 1.8 \times 10^{10} M_\odot. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.Comment: 15 pages, 6 figures, 4 tables. MNRAS accepte

    Similar works

    Full text


    Available Versions