Up to switching isomorphism there are six ways to put signs on the edges of
the Petersen graph. We prove this by computing switching invariants, especially
frustration indices and frustration numbers, switching automorphism groups,
chromatic numbers, and numbers of proper 1-colorations, thereby illustrating
some of the ideas and methods of signed graph theory. We also calculate
automorphism groups and clusterability indices, which are not invariant under
switching. In the process we develop new properties of signed graphs,
especially of their switching automorphism groups.Comment: 39 pp., 7 fi