An important challenge of wireless networks is to boost the cell edge
performance and enable multi-stream transmissions to cell edge users.
Interference mitigation techniques relying on multiple antennas and
coordination among cells are nowadays heavily studied in the literature.
Typical strategies in OFDMA networks include coordinated scheduling,
beamforming and power control. In this paper, we propose a novel and practical
type of coordination for OFDMA downlink networks relying on multiple antennas
at the transmitter and the receiver. The transmission ranks, i.e.\ the number
of transmitted streams, and the user scheduling in all cells are jointly
optimized in order to maximize a network utility function accounting for
fairness among users. A distributed coordinated scheduler motivated by an
interference pricing mechanism and relying on a master-slave architecture is
introduced. The proposed scheme is operated based on the user report of a
recommended rank for the interfering cells accounting for the receiver
interference suppression capability. It incurs a very low feedback and backhaul
overhead and enables efficient link adaptation. It is moreover robust to
channel measurement errors and applicable to both open-loop and closed-loop
MIMO operations. A 20% cell edge performance gain over uncoordinated LTE-A
system is shown through system level simulations.Comment: IEEE Transactions or Wireless Communications, Accepted for
Publicatio