Accepting a proposition means that our confidence in this proposition is
strictly greater than the confidence in its negation. This paper investigates
the subclass of uncertainty measures, expressing confidence, that capture the
idea of acceptance, what we call acceptance functions. Due to the monotonicity
property of confidence measures, the acceptance of a proposition entails the
acceptance of any of its logical consequences. In agreement with the idea that
a belief set (in the sense of Gardenfors) must be closed under logical
consequence, it is also required that the separate acceptance o two
propositions entail the acceptance of their conjunction. Necessity (and
possibility) measures agree with this view of acceptance while probability and
belief functions generally do not. General properties of acceptance functions
are estabilished. The motivation behind this work is the investigation of a
setting for belief revision more general than the one proposed by Alchourron,
Gardenfors and Makinson, in connection with the notion of conditioning.Comment: Appears in Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence (UAI1995