research

Sharp RIP Bound for Sparse Signal and Low-Rank Matrix Recovery

Abstract

This paper establishes a sharp condition on the restricted isometry property (RIP) for both the sparse signal recovery and low-rank matrix recovery. It is shown that if the measurement matrix AA satisfies the RIP condition δkA<1/3\delta_k^A<1/3, then all kk-sparse signals β\beta can be recovered exactly via the constrained 1\ell_1 minimization based on y=Aβy=A\beta. Similarly, if the linear map M\cal M satisfies the RIP condition δrM<1/3\delta_r^{\cal M}<1/3, then all matrices XX of rank at most rr can be recovered exactly via the constrained nuclear norm minimization based on b=M(X)b={\cal M}(X). Furthermore, in both cases it is not possible to do so in general when the condition does not hold. In addition, noisy cases are considered and oracle inequalities are given under the sharp RIP condition.Comment: to appear in Applied and Computational Harmonic Analysis (2012

    Similar works