research

Low-Complexity Reduced-Rank Beamforming Algorithms

Abstract

A reduced-rank framework with set-membership filtering (SMF) techniques is presented for adaptive beamforming problems encountered in radar systems. We develop and analyze stochastic gradient (SG) and recursive least squares (RLS)-type adaptive algorithms, which achieve an enhanced convergence and tracking performance with low computational cost as compared to existing techniques. Simulations show that the proposed algorithms have a superior performance to prior methods, while the complexity is lower.Comment: 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions