A reduced-rank framework with set-membership filtering (SMF) techniques is
presented for adaptive beamforming problems encountered in radar systems. We
develop and analyze stochastic gradient (SG) and recursive least squares
(RLS)-type adaptive algorithms, which achieve an enhanced convergence and
tracking performance with low computational cost as compared to existing
techniques. Simulations show that the proposed algorithms have a superior
performance to prior methods, while the complexity is lower.Comment: 7 figure