A formalism is developed which describes the extent to which stochastic
oscillations in biochemical models are synchronised. It is based on the
calculation of the complex coherence function within the linear noise
approximation. The method is illustrated on a simple example and then applied
to study the synchronisation of chemical concentrations in social amoeba. The
degree to which variation of rate constants in different cells and the volume
of the cells affects synchronisation of the oscillations is explored, and the
phase lag calculated. In all cases the analytical results are shown to be in
good agreement with those obtained through numerical simulations