research

Convergence of the largest eigenvalue of normalized sample covariance matrices when p and n both tend to infinity with their ratio converging to zero

Abstract

Let Xp=(s1,...,sn)=(Xij)pΓ—n\mathbf{X}_p=(\mathbf{s}_1,...,\mathbf{s}_n)=(X_{ij})_{p \times n} where XijX_{ij}'s are independent and identically distributed (i.i.d.) random variables with EX11=0,EX112=1EX_{11}=0,EX_{11}^2=1 and EX114<∞EX_{11}^4<\infty. It is showed that the largest eigenvalue of the random matrix Ap=12np(XpXpβ€²βˆ’nIp)\mathbf{A}_p=\frac{1}{2\sqrt{np}}(\mathbf{X}_p\mathbf{X}_p^{\prime}-n\mathbf{I}_p) tends to 1 almost surely as pβ†’βˆž,nβ†’βˆžp\rightarrow\infty,n\rightarrow\infty with p/nβ†’0p/n\rightarrow0.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ381 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Similar works