We report a demonstration of phase-resolved vibrometry, in which out-of-plane
sinusoidal motion is assessed by heterodyne holography. In heterodyne
holography, the beam in the reference channel is an optical local oscillator
(LO). It is frequency-shifted with respect to the illumination beam to enable
frequency conversion within the sensor bandwidth. The proposed scheme
introduces a strobe LO, where the reference beam is frequency-shifted and
modulated in amplitude, to alleviate the issue of phase retrieval. The strobe
LO is both tuned around the first optical modulation side band at the vibration
frequency, and modulated in amplitude to freeze selected mechanical vibration
states sequentially. The phase map of the vibration can then be derived from
the demodulation of successive vibration states