The classical Stokes matrices for the quantum differential equation of
projective n-space are computed, using multisummation and the so-called
monodromy identity. Thus, we recover the results of D. Guzzetti that confirm
Dubrovin's conjecture for projective spaces. The same method yields explicit
formulas for the Stokes matrices of the quantum differential equations of
smooth Fano hypersurfaces in projective n-space and for weighted projective
spaces.Comment: 20 pages. Introduction has been changed. Small corrections in the
tex