By using coupling argument and regularization approximations of the
underlying subordinator, dimension-free Harnack inequalities are established
for a class of stochastic equations driven by a L\'evy noise containing a
subordinate Brownian motion. The Harnack inequalities are new even for linear
equations driven by L\'evy noise, and the gradient estimate implied by our
log-Harnack inequality considerably generalizes some recent results on gradient
estimates and coupling properties derived for L\'evy processes or linear
equations driven by L\'evy noise. The main results are also extended to
semi-linear stochastic equations in Hilbert spaces.Comment: 15 page