The kernel-independent fast multipole method (KIFMM) proposed in [1] is of
almost linear complexity. In the original KIFMM the time-consuming M2L
translations are accelerated by FFT. However, when more equivalent points are
used to achieve higher accuracy, the efficiency of the FFT approach tends to be
lower because more auxiliary volume grid points have to be added. In this
paper, all the translations of the KIFMM are accelerated by using the singular
value decomposition (SVD) based on the low-rank property of the translating
matrices. The acceleration of M2L is realized by first transforming the
associated translating matrices into more compact form, and then using low-rank
approximations. By using the transform matrices for M2L, the orders of the
translating matrices in upward and downward passes are also reduced. The
improved KIFMM is then applied to accelerate BEM. The performance of the
proposed algorithms are demonstrated by three examples. Numerical results show
that, compared with the original KIFMM, the present method can reduce about 40%
of the iterating time and 25% of the memory requirement.Comment: 19 pages, 4 figure