We describe how to generate an Einstein-Podolsky-Rosen (EPR) paradox between
a mesoscopic mechanical oscillator and an optical pulse. We find two types of
paradox, defined by whether it is the oscillator or the pulse that shows the
effect Schrodinger called "steering". Only the oscillator paradox addresses the
question of mesoscopic local reality for a massive system. In that case, EPR's
"elements of reality" are defined for the oscillator, and it is these elements
of reality that are falsified (if quantum mechanics is complete). For this sort
of paradox, we show that a thermal barrier exists, meaning that a threshold
level of pulse-oscillator interaction is required for a given thermal
occupation n_0 of the oscillator. We find there is no equivalent thermal
barrier for the entanglement of the pulse with the oscillator, nor for the EPR
paradox that addresses the local reality of the optical system. Finally, we
examine the possibility of an EPR paradox between two entangled oscillators.
Our work highlights the asymmetrical effect of thermal noise on quantum
nonlocality.Comment: 9 pages, 7 figure