We find conditions for the connectivity of inhomogeneous random graphs with
intermediate density. Our results generalize the classical result for G(n, p),
when p = c log n/n. We draw n independent points X_i from a general
distribution on a separable metric space, and let their indices form the vertex
set of a graph. An edge (i,j) is added with probability min(1, \K(X_i,X_j) log
n/n), where \K \ge 0 is a fixed kernel. We show that, under reasonably weak
assumptions, the connectivity threshold of the model can be determined.Comment: 13 pages. To appear in Random Structures and Algorithm