research

On Revenue Maximization with Sharp Multi-Unit Demands

Abstract

We consider markets consisting of a set of indivisible items, and buyers that have {\em sharp} multi-unit demand. This means that each buyer ii wants a specific number did_i of items; a bundle of size less than did_i has no value, while a bundle of size greater than did_i is worth no more than the most valued did_i items (valuations being additive). We consider the objective of setting prices and allocations in order to maximize the total revenue of the market maker. The pricing problem with sharp multi-unit demand buyers has a number of properties that the unit-demand model does not possess, and is an important question in algorithmic pricing. We consider the problem of computing a revenue maximizing solution for two solution concepts: competitive equilibrium and envy-free pricing. For unrestricted valuations, these problems are NP-complete; we focus on a realistic special case of "correlated values" where each buyer ii has a valuation v_i\qual_j for item jj, where viv_i and \qual_j are positive quantities associated with buyer ii and item jj respectively. We present a polynomial time algorithm to solve the revenue-maximizing competitive equilibrium problem. For envy-free pricing, if the demand of each buyer is bounded by a constant, a revenue maximizing solution can be found efficiently; the general demand case is shown to be NP-hard.Comment: page2

    Similar works