research

Finite temperature dynamical properties of SU(NN) fermionic Hubbard models in the spin-incoherent regime

Abstract

We study strongly correlated Hubbard systems extended to symmetric NN-component fermions. We focus on the intermediate-temperature regime between magnetic superexchange and interaction energy, which is relevant to current ultracold fermionic atom experiments. The NN-component fermions are represented by slave particles, and, by using a diagrammatic technique based on the atomic limit, spectral functions are analytically obtained as a function of temperature, filling factor and the component number NN. We also apply this analytical technique to the calculation of lattice modulation experiments. We compute the production rate of double occupancy induced by modulation of an optical lattice potential. Furthermore, we extend the analysis to take into account the trapping potential by use of the local density approximation. We find an excellent agreement with recent experiments on 173^{173}Yb atoms.Comment: 15 pages, 13 figures, published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions