CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Efficient couplers for photonic crystal waveguides
Authors
AA Asatryan
LC Botten
+5 more
J Brnovic
S Chen
CM de Sterke
K Dossou
RC McPhedran
Publication date
1 September 2006
Publisher
Doi
Abstract
We use two-dimensional simulations to study the design of tapers to provide efficient, low reflection coupling between a waveguide in a two-dimensional photonic crystal (PC) and free space. We find that, largely independent of the PC parameters, or of the length and width of the tapered region, the same type of concave, horn-shaped tapering profile is optimal for coupling from the waveguide into free space, and significantly out-performs the widely used linear taper. We also find that optimal tapers can radiate nearly Gaussian beams, and therefore they can also provide efficient coupling of Gaussian beams from free space into the PC waveguide. These properties are better exhibited by rod-type PCs with Ez polarization than by hole-type PCs with Hz polarization. This study of taper couplers exemplifies a design strategy for photonic circuits which optimizes positioning of the cylinders immediately surrounding the light path, and then builds the rest of the crystal structure around these cylinders. © 2006 Elsevier B.V. All rights reserved
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 14/09/2015