Nowadays, a lot of research papers are concentrating on the diffusion dynamics of infectious diseases, especially the most recent one: COVID-19. The primary goal of this work is to explore the stability analysis of a new version of the SEIR model formulated with incommensurate fractional-order derivatives. In particular, several existence and uniqueness results of the solution of the proposed model are derived by means of the Picard-Lindelof method. Several stability analysis results related to the disease-free equilibrium of the model are reported in light of computing the so-called basic reproduction number, as well as in view of utilising a certain Lyapunov function. In conclusion, various numerical simulations are performed to confirm the theoretical findings