CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
They are Not Equally Reliable: Semantic Event Search Using Differentiated Concept Classifiers
Authors
X Chang
EP Xing
Y Yang
YL Yu
Publication date
9 December 2016
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Cite
Abstract
© 2016 IEEE. Complex event detection on unconstrained Internet videos has seen much progress in recent years. However, state-of-the-art performance degrades dramatically when the number of positive training exemplars falls short. Since label acquisition is costly, laborious, and time-consuming, there is a real need to consider the much more challenging semantic event search problem, where no example video is given. In this paper, we present a state-of-the-art event search system without any example videos. Relying on the key observation that events (e.g. dog show) are usually compositions of multiple mid-level concepts (e.g. 'dog,' 'theater,' and 'dog jumping'), we first train a skip-gram model to measure the relevance of each concept with the event of interest. The relevant concept classifiers then cast votes on the test videos but their reliability, due to lack of labeled training videos, has been largely unaddressed. We propose to combine the concept classifiers based on a principled estimate of their accuracy on the unlabeled test videos. A novel warping technique is proposed to improve the performance and an efficient highly-scalable algorithm is provided to quickly solve the resulting optimization. We conduct extensive experiments on the latest TRECVID MEDTest 2014, MEDTest 2013 and CCV datasets, and achieve state-of-the-art performances
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Fcvpr.2016.2...
Last time updated on 05/08/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017