CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water
Authors
W Guo
N Li
+4 more
HH Ngo
H Wen
W Wu
X Zhang
Publication date
1 May 2016
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2016 Elsevier Ltd. Currently, the occurrence and fate of antibiotics in the aquatic environment has become a very serious problem in that they can potentially and irreversibly damage the ecosystem and human health. For this reason, interest has increased in developing strategies to remove antibiotics from water. This study evaluated the performance of powdered activated carbon (PAC) in removing from water 6 representative groups of 28 antibiotics, namely Tetracyclines (TCs), Macrolides (MCs), Chloramphenicols (CPs), Penicillins (PNs), Sulfonamides (SAs) and Quinolones (QNs). Results indicate that PAC demonstrated superior adsorption capacity for all selected antibiotics. The removal efficiency was up to 99.9% in deionized water and 99.6% in surface water at the optimum conditions with PAC dosage of 20 mg/L and contact time of 120 min. According to the Freundlich model's adsorption isotherm, the values of n varied among these antibiotics and most were less than 1, suggesting that the adsorption of antibiotics onto PAC was nonlinear. Adsorption of antibiotics followed well the pseudo-second-order kinetic model (R2 = 0.99). Analysis using the Weber-Morris model revealed that the intra-particle diffusion was not the only rate-controlling step. Overall, the findings in this study confirm that PAC is a feasible and viable option for removing antibiotics from water in terms of water quality improvement and urgent antibiotics pollution control. Further research is essential on the following subjects: (i) removing more types of antibiotics by PAC; (ii) the adsorption process; and (iii) the mechanism of the competitive adsorption existing between natural organic matters (NOMs) and antibiotics
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.jenvman.2...
Last time updated on 09/01/2021