CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Feature Analysis for Discrimination of Motor Unit Action Potentials
Authors
E Dutkiewicz
AJ Fuglevand
+4 more
PHW Leong
AL McEwan
DN Nguyen
TT Pham
Publication date
11 December 2018
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
© 2018 IEEE. In electrophysiological signal processing for intramuscular electromyography data (nEMG), single motor unit activity is of great interest. The changes of action potential (MUAP) morphology, motor unit (MU) activation, and recruitment provide the most informative part to study the nature causality in neuromuscular disorders. In practice, for a single nEMG recording, more than one motor unit activities (in the surrounding area of a needle electrode) are usually collected. Such a fact makes the MUAP discrimination that separates single unit activities a crucial task. Most neurology laboratories worldwide still recruit specialists who spend hours to manually or semi-automatically sort MUAPs. From a machine learning perspective, this task is analogous to the clustering-based classification problem in which the number of classes and other class information are unfortunately missing. In this paper, we present a feature analysis strategy to help better utilize unsupervised (i.e., totally automated) methods for MUAP discrimination. To that end, we extract a large pool of features from each MUAP. Then we select the top ranked candidates using clusterability scores as selection criteria. We found spectrograms of wavelet decomposition as a top-ranking feature, highly correlated to the motor unit reference and was more separable than existing features. Using a correlation-based clustering technique, we demonstrate the sorting performance with this feature set. Compared with the reference produced by human experts, our method obtained a comparable result (e.g., equivalent number of classes was found, identical MUAP morphology in each pair of corresponding MU class, and similar histograms of MUs). Taking the manual labels as references, our method got a much higher sensitivity and accuracy than the compared unsupervised sorting method. We obtained a similar result in MUAP classification to the reference
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019