CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Extracting discriminative features for identifying abnormal sequences in one-class mode
Authors
L Cao
Y Song
C Wang
J Yin
Publication date
1 August 2013
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Cite
Abstract
This paper presents a novel framework for detecting abnormal sequences in an one-class setting (i.e., only normal data are available), which is applicable to various domains. Examples include intrusion detection, fault detection and speaker verification. Detecting abnormal sequences with only normal data presents several challenges for anomaly detection: the weak discrimination of normal and abnormal sequences; the unavailability of the abnormal data and other issues. Traditional model-based anomaly detection techniques can solve some of the above issues but with limited discrimination power (because of directly modeling the normal data). In order to enhance the discriminative power for anomaly detection, we turn to extracting discriminative features from the generative model based on the principle deducted from the corresponding theoretical analysis. Then a new anomaly detection framework is developed on top of that. The proposed approach firstly projects all the sequential data into a model-based equal length feature space (this is theoretically proven to have better discriminative power than the model itself), and then adopts a classifier learned from the transformed data to detect anomalies. Experimental evaluation on both the synthetic and real-world data shows that our proposed approach outperforms several anomaly detection baseline algorithms for sequential data. © 2013 IEEE
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Fijcnn.2013....
Last time updated on 22/07/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017