CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals
Authors
R Hill
AWD Larkum
+3 more
PJ Ralph
KE Ulstrup
MJH Van Oppen
Publication date
1 January 2008
Publisher
'Inter-Research Science Center'
Doi
Cite
Abstract
Seasonal variation in the composition of the algal endosymbiont community and photophysiology was determined in the corals Pocillopora damicornis, which show high local fidelity to one symbiont type (Symbiodinium C1), and Acropora valida, with a mixed Symbiodinium symbiont community, comprising members of both clades A and C. The relative abundances of Symbiodinium types varied over time. A significant decline in symbiont densities in both coral species during the summer of 2005 coincided with a NOAA 'hotspot' warning for Heron Island. This also coincided with a relative increase in the presence and dominance of clade A in A. valida, particularly in sun-adapted surfaces. The effective quantum yield of Photosystem II (ΦPSII) suggested that sun-adapted surfaces of P. damicornis are more sensitive than shade-adapted surfaces to combined effects of higher temperature and irradiance in summer. Xanthophyll cycling was greater in P. damicornis than A. valida, irrespective of branch position and sampling time; this may be a mechanism by which P. damicornis compensates for its fidelity to Symbiodinium C1. Furthermore, xanthophyll de-epoxidation in P. damicornis symbionts was greater in sun-adapted than shade-adapted surfaces, correlating with non-photochemical quenching (NPQRLC). No variation was found in A. valida, indicating that resident symbiont communities may not have been physiologically compromised, perhaps as a result of changes in the composition of the Symbiodinium community consortia. © Inter-Research 2008
Similar works
Full text
Available Versions
Copenhagen University Research Information System
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pure.atira.dk:publications...
Last time updated on 18/12/2019
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 14/09/2015