CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Linear Precoding for Finite-alphabet Inputs over MIMO Fading Channels with Statistical CSI
Authors
Jianhua Lu
Mingxi Wang
Chengshan Xiao
Weiliang Zeng
Publication date
1 June 2012
Publisher
Scholars\u27 Mine
Doi
Abstract
This paper investigates the linear precoder design that maximizes the average mutual information of multiple-input multiple-output fading channels with statistical channel state information known at the transmitter. It formulates the design from the standpoint of finite-alphabet inputs, which leads to a problem that is very important in practice but extremely difficult in theory: First, the average mutual information lacks closed-form expression and involves prohibitive computational burden. Second, the optimization over the precoder is nonconcave and thus easily gets stuck in local maxima. to address these issues, this study first derives lower and upper bounds for the average mutual information, in which the computational complexity is reduced by several orders of magnitude compared to calculating the average mutual information directly. It proves that maximizing the bounds is asymptotically optimal and shows that, with a constant shift, the lower bound actually offers a very accurate approximation to the average mutual information for various fading channels. This paper further proposes utilizing the lower bound as a low-complexity and accurate alternative for developing a two-step algorithm to find a near global optimal precoder. Numerical examples demonstrate the convergence and efficacy of the proposed algorithm. Compared to its conventional counterparts, the proposed linear precoding method provides significant performance gain over existing precoding algorithms. the gain becomes more substantial when the spatial correlation of MIMO channels increases. © 2012 IEEE
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Ftsp.2012.21...
Last time updated on 23/04/2021