Assessment of post-infarct ventricular septal defects through 3D printing and statistical shape analysis

Abstract

© 2023 Giovanni Biglino. This work is licensed under the Creative Commons Attribution 4.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Background: Post-infarct ventricular septal defect (PIVSD) is a serious complication of myocardial infarction. We evaluated 3D-printing models in PIVSD clinical assessment and the feasibility of statistical shape modeling for morphological analysis of the defects. Methods: Models (n = 15) reconstructed from computed tomography data were evaluated by clinicians (n = 8). Statistical shape modeling was performed on 3D meshes to calculate the mean morphological configuration of the defects. Results: Clinicians’ evaluation highlighted the models’ utility in displaying defects for interventional/surgical planning, education/training and device development. However, models lack dynamic representation. Morphological analysis was feasible and revealed oval-shaped (n = 12) and complex channel-like (n = 3) defects. Conclusion: 3D-PIVSD models can complement imaging data for teaching and procedural planning. Statistical shape modeling is feasible in this scenario.The authors gratefully acknowledge the support of the British Heart Foundation (CH/17/1/32804), the Bristol BHF Accelerator Award (AA/18/1/34219), The Grand Appeal (Bristol Children’s Hospital Charity), and the Bristol National Institute for Health Research (NIHR) Biomedical Research Centre (BRC).Peer reviewe

    Similar works