Observation of Berry curvature in non-Hermitian system from far-field radiation

Abstract

Berry curvature that describes local geometrical properties of energy bands can elucidate many fascinating phenomena in solid-state, photonic, and phononic systems, given its connection to global topological invariants such as the Chern number. Despite its significance, the observation of Berry curvature poses a substantial challenging since wavefunctions are deeply embedded within the system. Here, we theoretically propose a correspondence between the geometry of far-field radiation and the underneath band topology of non-Hermitian systems, thus providing a general method to fully capture the Berry curvature without strongly disturbing the eigenstates. We further experimentally observe the Berry curvature in a honeycomb photonic crystal slab from polarimetry measurements and quantitatively obtain the non-trivial valley Chern number. Our work reveals the feasibility of retrieving the bulk band topology from escaping photons and paves the way to exploring intriguing topological landscapes in non-Hermitian systems

    Similar works

    Full text

    thumbnail-image

    Available Versions