Potentials for general-relativistic geodesy

Abstract

Geodesy in a Newtonian framework is based on the Newtonian gravitational potential. The general-relativistic gravitational field, however, is not fully determined by a single potential. The vacuum field around a stationary source can be decomposed into two scalar potentials and a tensorial spatial metric, which together serve as the basis for general-relativistic geodesy. One of the scalar potentials is a generalization of the Newtonian potential while the second one describes the influence of the rotation of the source on the gravitational field for which no non-relativistic counterpart exists. In this paper the operational realizations of these two potentials, and also of the spatial metric, are discussed. For some analytically given spacetimes the two potentials are exemplified and their relevance for practical geodesy on Earth is outlined.Comment: 11 pages, 3 figures (15 subfigures), Acknowledgement adde

    Similar works

    Full text

    thumbnail-image

    Available Versions