This review aims to contribute to the quest for artificial general
intelligence by examining neuroscience and cognitive psychology methods for
potential inspiration. Despite the impressive advancements achieved by deep
learning models in various domains, they still have shortcomings in abstract
reasoning and causal understanding. Such capabilities should be ultimately
integrated into artificial intelligence systems in order to surpass data-driven
limitations and support decision making in a way more similar to human
intelligence. This work is a vertical review that attempts a wide-ranging
exploration of brain function, spanning from lower-level biological neurons,
spiking neural networks, and neuronal ensembles to higher-level concepts such
as brain anatomy, vector symbolic architectures, cognitive and categorization
models, and cognitive architectures. The hope is that these concepts may offer
insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference