Novel view synthesis is an essential functionality for enabling immersive
experiences in various Augmented- and Virtual-Reality (AR/VR) applications, for
which generalizable Neural Radiance Fields (NeRFs) have gained increasing
popularity thanks to their cross-scene generalization capability. Despite their
promise, the real-device deployment of generalizable NeRFs is bottlenecked by
their prohibitive complexity due to the required massive memory accesses to
acquire scene features, causing their ray marching process to be
memory-bounded. To this end, we propose Gen-NeRF, an algorithm-hardware
co-design framework dedicated to generalizable NeRF acceleration, which for the
first time enables real-time generalizable NeRFs. On the algorithm side,
Gen-NeRF integrates a coarse-then-focus sampling strategy, leveraging the fact
that different regions of a 3D scene contribute differently to the rendered
pixel, to enable sparse yet effective sampling. On the hardware side, Gen-NeRF
highlights an accelerator micro-architecture to maximize the data reuse
opportunities among different rays by making use of their epipolar geometric
relationship. Furthermore, our Gen-NeRF accelerator features a customized
dataflow to enhance data locality during point-to-hardware mapping and an
optimized scene feature storage strategy to minimize memory bank conflicts.
Extensive experiments validate the effectiveness of our proposed Gen-NeRF
framework in enabling real-time and generalizable novel view synthesis.Comment: Accepted by ISCA 202